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Sound transmission through ducts of constant cross-section with a uniform inviscid
mean flow and a constant acoustic lining (impedance wall) is classically described
by a modal expansion, where the modes are eigenfunctions of the corresponding
Laplace eigenvalue problem along a duct cross-section. A natural extension for ducts
with cross-section and wall impedance that are varying slowly (compared to a typical
acoustic wavelength and a typical duct radius) in the axial direction is a multiple-
scales solution. This has been done for the simpler problem of circular ducts with
homentropic irrotational flow. In the present paper, this solution is generalized to
the problem of ducts of arbitrary cross-section. It is shown that the multiple-scales
problem allows an exact solution, given the cross-sectional Laplace eigensolutions. The
formulation includes both hollow and annular geometries. In addition, the turning
point analysis is given for a single hard-wall cut-on, cut-off transition. This appears to
yield the same reflection and transmission coefficients as in the circular duct problem.

1. Introduction
The sound field in a duct of constant cross-section with linear boundary conditions

that are independent of the axial coordinate may be described by an infinite sum of
modes, consisting of the eigenfunctions of the Laplace operator corresponding to a
duct cross-section. Consider the two-dimensional area A with a smooth boundary
∂A and an externally directed unit normal n (figure 1). For physical relevance A
should be simply connected, otherwise we would have several independent ducts.
When we consider, for definiteness, this area be part of the (y, z)-plane, it describes
the duct D given by

D = {x = (x, y, z)|(0, y, z) ∈ A}
with axial cross-sections being copies of A and the normal vectors n are the same
for all x. Assume in the duct a field φ satisfying the reduced wave equation with
boundary conditions

∇2φ + ω2φ = 0 for x ∈ D, with B(φ) = 0 for x ∈ ∂D,

where B is typically of the form

B(φ) = a(y, z)n·∇φ + b(y, z)φ + c(y, z) ∂
∂x

φ,

although more derivatives with respect to x would not essentially alter the result.
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Figure 1. Straight duct.

The solution of this problem may be given by

φ(x, y, z) =

∞∑
n=0

Cnψn(y, z) e−iknx

where ψn are the eigenfunctions of the Laplace operator reduced to A, i.e. solutions
of

−
(

∂2

∂y2
+

∂2

∂z2

)
ψ = α2ψ for (y, z) ∈ A, with B̃(ψ; α) = 0 for (y, z) ∈ ∂A,

and α2 is the corresponding eigenvalue. The axial wavenumber k is defined through
the dispersion relation k2 = ω2 − α2 and the reduced boundary condition operator B̃
is given by

B̃(ψ; α) = a(y, z)n·∇ψ + b(y, z)ψ − ik(α)c(y, z)ψ.

If the duct cross-section is circular or rectangular while the boundary condition is
uniform everywhere, the solutions of the eigenvalue problem are relatively simple:
combinations of exponentials and Besselfunctions in the circular case and combin-
ations of trigonometric functions in the rectangular case. Some other geometries,
like ellipses, also allow explicit solutions. For other geometries one has to fall back on
numerical methods for the eigenvalue problem. If the duct contains a uniform mean
flow, the above solution is only little different.

Each term in the series expansion, i.e. ψn(y, z) e−iknx , is called a duct mode.
Mathematically, these modes are interesting because (in general) they form a complete
basis by which any other solution can be represented. Physically, they are interesting
because the usually complicated behaviour of the total field is more easily understood
via the simple properties of the elements.

A very important application of a problem of this kind is the sound propagation
in the inlet or bypass duct of a turbofan aircraft engine. Near the fan, the duct cross-
section is necessarily circularly annular, but in other parts both diameter and shape
may vary. Because of the mean flow, these variations are necessarily gradual and slow.
By utilizing this slow variation the above analysis was extended in Rienstra (1999) to
slowly varying modes, by way of an application of the method of multiple scales or
the WKB method, for an isentropic irrotational mean flow in a circular, hollow and
annular, lined duct. In Rienstra & Eversman (2001) this solution was compared with
a numerically ‘exact’ solution. Cooper and Peake expanded this result extensively in
two ways. In Peake & Cooper (2001), the solution was given for hard-walled ducts of
cross-sections of elliptic shape with irrotational mean flow. In Cooper & Peake (2001)
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the analysis was given for lined circular (hollow and annular) ducts with mean flow
with swirl. This last case is far more complicated than the one for irrotational flow,
as the equations are not self-adjoint.

In the present paper we will generalize the solutions for irrotational isentropic
mean flow to that of slowly varying modes in ducts of arbitrary cross-section and
arbitrary boundary conditions of impedance type. The paper is structured as follows.
We start, in § 2, by formulating the model considered of irrotational isentropic mean
flow with perturbations in non-dimensional form, the geometry with slow variation in
the axial direction, and the boundary conditions. Then, in § 3, the mean flow is solved
asymptotically to leading order, as far as is necessary for the final result. Section 4,
which is the major part of the paper, is devoted to the asymptotic solution of the
acoustic field in the form of a slowly varying duct mode. Then in § 5 it is shown
that the solution found incorporates the previously found solutions. Finally in § 6, we
consider the turning point problem of a hard-walled mode passing a cut-on/cut-off
transition. This is of interest because here the asymptotic theory breaks down.

2. The problem
2.1. The equations

In the acoustic realm of a perfect gas that we will consider (infinite Reynolds and
Péclet numbers, constant heat capacities), we have for pressure p̃, velocity ṽ, density
ρ̃, entropy s̃, and sound speed c̃

d

dt
ρ̃ = −ρ̃∇· ṽ, ρ̃

d

dt
ṽ = −∇p̃,

d

dt
s̃ = 0,

s̃ = CV log p̃ − CP log ρ̃, c̃2 =
γ p̃

ρ̃
, γ =

CP

CV

,


 (1)

where γ , CP and CV are gas constants. CV is the heat capacity at constant volume,
CP is the heat capacity at constant pressure, and γ = CP /CV . We have a stationary
mean flow with unsteady time-harmonic perturbations of frequency ω > 0, given, in
the usual complex notation, by

ṽ = V + Re(v eiωt ), p̃ = P + Re(p eiωt ), ρ̃ =D + Re(ρ eiωt ), s̃ = S + Re(s eiωt ). (2)

For notational convenience we introduced capital letters to denote the mean flow
part. To avoid confusion we use for density D rather than P . When we linearize for
small amplitude, we obtain for the mean flow

∇·(DV ) = 0, D(V ·∇)V = −∇P, (V ·∇)S = 0,

S = CV log P − CP log D, C2 =
γP

D


 (3)

and for the perturbations

iωρ + ∇·(Vρ + vD) = 0, (4a)

D(iω + V ·∇)v + D(v·∇)V + ρ(V ·∇)V = −∇p, (4b)

(iω + V ·∇)s + v·∇S = 0, (4c)

with

s =
CV

P
p − CP

D
ρ =

CV

P
(p − C2ρ). (4d)
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Figure 2. Sketch of the geometry.

Assuming that the flow field ṽ is irrotational and isentropic everywhere (homentropic),
we can introduce a potential for the velocity, where ṽ = ∇φ̃ and φ̃ = H + Re(φ eiωt ),
and express p̃ as a function of ρ̃ only, such that we can integrate the momentum
equation (Bernoulli’s law, with constant E), to obtain for the mean flow

1
2
V 2 +

C2

γ − 1
= E, ∇·(DV ) = 0,

P

Dγ
= constant, C2 = γ

P

D
(5)

(where V = |V |) and for the acoustic perturbations

(iω + V ·∇) ρ + ρ∇·V + ∇·(D∇φ) = 0, D (iω + V ·∇) φ + p = 0, p = C2ρ.

(6)

These last equations are further simplified (eliminate p and ρ and use the fact that
∇·(DV ) = 0) to the quite general convected reduced wave equation

D−1∇·(D∇φ) − (iω + V ·∇)[C−2(iω + V ·∇)φ] = 0. (7)

2.2. Non-dimensionalization

Without further change of notation, we will assume throughout this paper that the
problem is made dimensionless: lengths on a typical duct radius, time on typical
sound speed/typical duct radius, pressure on typical density × (sound speed)2.

2.3. The geometry

The domain of interest consists of a duct V of arbitrary cross-section, slowly varying
in the axial direction (see figure 2). For definiteness, it is given by the function Σ in
cylindrical coordinates (x, r, θ) as follows:

Σ(X, r, θ) = r − R(X, θ) � 0 (8)

where X = εx � 0 is a so-called slow variable and ε is small. A cross-section A(X) at
X has surface area A(X). In order to avoid unnecessary complexity in notation, Σ = 0
corresponds to the surface of a hollow cylinder, but the analysis is easily generalized
to topologically more complex shapes. The results finally presented will be valid for
any hollow or annular ducts.

At the duct surface Σ =0 the gradient ∇Σ

∇Σ = −εexRX + er − eθ

1

R
Rθ, with ∇ = ex

∂

∂x
+ er

∂

∂r
+ eθ

1

r

∂

∂θ
(9)

(where an index denotes a partial derivative, except for ex, er , eθ which denote unit
basis vectors) is a vector normal to the surface, so

n =
∇Σ

|∇Σ | , (10)
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while the transverse gradient ∇⊥Σ

∇⊥Σ = er − eθ

1

R
Rθ, with ∇⊥ = er

∂

∂r
+ eθ

1

r

∂

∂θ
, (11)

is directed in the plane of a cross-section A(X), and normal to the perimeter ∂A.
So if n⊥ denotes the component of the surface-normal vector n in the plane of a
cross-section, we have

n⊥ =
∇⊥Σ

|∇⊥Σ | . (12)

Note that n⊥, written in terms of X, is independent of ε, and

n = n⊥ − ε
RRX√
R2 + R2

θ

ex + O(ε2). (13)

The orientation of θ and perimeter arclength � are chosen as indicated in figure 2,
i.e. such that

e� = ex ×n⊥, eθ = ex × er . (14)

2.4. Boundary conditions

The duct wall is impermeable to the mean flow, so we have the mean flow boundary
condition

V ·n = 0 at Σ =0. (15)

If we denote the mean flow by V = U ex + V⊥, with the axial component U and the
cross-wise component V⊥, the mean flow mass flux, given by∫ ∫

A
DU dσ = F, (16)

is independent of x. The mean flow is assumed to be determined by the slowly varying
geometry only. For example, entrance effects that scale on a duct diameter are not
present. The acoustic boundary condition of an impedance wall along a curved wall
with mean flow is, according to Myers (1980), given by

iω(v·n) = [iω + V ·∇ − n· (n·∇V )]

(
p

Z

)
at Σ = 0. (17)

The impedance Z may vary with position, provided it varies slowly in the x-direction,
so Z = Z(X, θ).

3. Mean flow
We assume the mean flow to be determined by the slowly varying geometry only.

For definiteness, we will assume in particular that far upstream the duct is of uniform
cross-section and the mean flow is independent of ε. We will apply the method of
slow variation (Van Dyke 1987) to construct an approximate solution. We write all
flow variables as a function of (X, r, θ; ε). Rewritten in terms of X, the equations
are now dependent only on ε2, while the upstream conditions are independent of ε.
It follows that the flow is now a function only of ε2, and – assuming regularity in
this parameter – we expand each variable in a regular Poincaré expansion in powers
of ε2.
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From elementary order of magnitude considerations it follows that U = O(1),
V⊥ = O(ε), H = O(ε−1), D = O(1), C = O(1), and P = O(1). So we have

H = ε−1H0 + εH1 + O(ε3), U = U0 + O(ε2), V⊥ = εV⊥0 + O(ε3),

D = D0 + O(ε2), P = P0 + O(ε2), C = C0 + O(ε2),

}
(18)

where each term in the expansion is independent of ε. We substitute these expansions
in the equation of mass conservation and in the boundary conditions at Σ = 0 and
collect the terms of like powers of ε. Then we obtain to leading order

∇⊥· (D0∇⊥H0) = 0, with ∇⊥H0·n⊥ = 0 at r = R. (19)

A solution for H0 is evidently ∇⊥H0 ≡ 0, in other words H0 = H0(X). Moreover,
this solution is indeed unique, as may be seen from the following integral along a
cross-section A:∫ ∫

A
H0∇⊥· (D0∇⊥H0) dσ =

∫ ∫
A

∇⊥· (H0D0∇⊥H0) − D0|∇⊥H0|2 dσ

=

∫
∂A

H0D0(∇⊥H0·n⊥) d� −
∫ ∫

A
D0 |∇⊥H0|2 dσ = −

∫ ∫
A

D0 |∇⊥H0|2 dσ = 0.

(20)

So for any D0 > 0, |∇⊥H0|2 ≡ 0.
From the leading order of Bernoulli’s equation and the relations between P , D

and C

1
2
U 2

0 +
C2

0

γ − 1
= E, C2

0 =
γP0

D0

,
P0

D
γ

0

= γ −1, (21)

we find that C0 and thus D0 and P0 are also a function of X only. U0 is found from
the given mass flux F through a cross-section A with surface A(X):

U0(X) =
F

D0(X)A(X)
, (22)

and D0 (and hence C0 and P0) is found as the root of the algebraic equation that
results from Bernoulli’s equation

F2

2D2
0A

2
+

D
γ −1
0

γ − 1
= E. (23)

Altogether we have a nearly uniform mean flow

V (X, r, θ; ε) = U0(X)ex + εV⊥0(X, r, θ) + O(ε2),

D(X, r, θ; ε) = D0(X) + O(ε2), C(X, r, θ; ε) = C0(X) + O(ε2).

}
(24)

The mean flow cross-wise component V⊥0 is defined by

∂

∂X
(D0U0) + ∇⊥· (D0V⊥0) = 0, with V⊥0·n⊥ =

RRX√
R2 + R2

θ

U0 at r = R, (25)

but it is not determined here, as it does not appear in the final result.
We finally note that the operator that occurs in the acoustic boundary condition

becomes

iω + V ·∇ − n· (n·∇V ) = iω + U0

∂

∂x
+ ε(V⊥0·∇⊥ − n⊥· (n⊥·∇⊥V⊥0)) + O(ε2). (26)
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4. Acoustic field
The equation for the acoustic field φ becomes, under the above approximation,

φxx + ∇2
⊥φ − C−2

0

[
−ω2φ + 2iωU0φx + U 2

0 φxx

]
+ ε

{
D−1

0 D0,Xφx − iωU0

(
C−2

0

)
X

φ − U0

(
U0C

−2
0

)
X

φx

− 2iωC−2
0 (V⊥0·∇⊥φ) − 2U0C

−2
0 (V⊥0·∇⊥φx)

}
+ O(ε2) = 0. (27)

The assumption of a multiple-scales solution is equivalent here to the WKB-Ansatz:

φ = Φ(X, r, θ; ε)exp

(
−i

∫ x

µ(εξ ; ε) dξ

)
, (28a)

φx = (−iµΦ + εΦX)exp

(
−i

∫ x

µ(εξ ; ε) dξ

)
, (28b)

φxx = (−µ2Φ − iεµXΦ − 2iεµΦX + ε2ΦXX)exp

(
−i

∫ x

µ(εξ ; ε) dξ

)
, (28c)

p = −D0(iΩΦ + εU0ΦX + εV⊥0·∇⊥Φ)exp

(
−i

∫ x

µ(εξ ; ε) dξ

)
. (28d)

Introduce

Ω = ω − µU0, (29)

and substitute the above to obtain after some simplifications

∇2
⊥Φ +

(
Ω2

C2
0

− µ2

)
Φ =

iε

D0Φ

[[(
ΩU0

C2
0

+ µ

)
D0Φ

2

]
X

+ ∇⊥·
(

ΩD0

C2
0

Φ2V⊥0

)]
+ O(ε2),

(30a)

where use is made of −(D0U0)X = ∇⊥· (D0V⊥0). We obtain for the boundary condition
at r = R

iω(n⊥·∇⊥Φ) − Ω2D0

Z
Φ

= εωµ
RRX√
R2 + R2

θ

Φ − iε

[
U0

(
D0ΩΦ

Z

)
X

+ U0

D0Ω

Z
ΦX

+ D0ΩV⊥0·∇⊥

(
Φ

Z

)
+

D0Ω

Z
V⊥0·∇⊥Φ

]
+ iεn⊥· (n⊥·∇⊥V⊥0)

D0ΩΦ

Z
. (30b)

We expand in the usual way:

Φ(X, r, θ; ε) = Φ0(X, r, θ) + εΦ1(X, r, θ) + O(ε2), µ(X; ε) = µ(X) + O(ε2), (31)

where we ignored for notational convenience the subscript of µ.
To leading order we obtain

∇2
⊥Φ0 +

(
Ω2

C2
0

− µ2

)
Φ0 = 0, with iω(n⊥·∇⊥Φ0) − Ω2D0

Z
Φ0 = 0 at r = R.

(32)

This is formally solved by the solution of the following eigenvalue problem in a
cross-sectional plane A, with X acting as a parameter:

−∇2
⊥ψ = α2ψ, with (n⊥·∇⊥ψ) =

Ω2D0

iωZ
ψ at r = R (33)
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and Ω = Ω(α) because it satisfies the dispersion relation

Ω2

C2
0

− (ω − Ω)2

U 2
0

= α2. (34)

We consider the nth eigenvalue α2
n with eigensolution ψn. We assume that

∫ ∫
Aψ2

n dσ �=
0 so that ψn can be normalized as∫ ∫

A
ψ2

n dσ = 1. (35)

Then we have

Φ0 = N (X)ψn(X, r, θ), and µn =
ω − Ω(αn)

U0

. (36)

The amplitude N is still unknown. This will be determined from a solvability condition
(Nayfeh 1973) for the next order Φ1. The existence of Φ1 is not evident because we
assumed the solution to be of a particular form, i.e. (28a)†. As we will not be able
to determine Φ1 entirely without considering Φ2, we will not try to solve the full
equation but restrict ourselves to a necessary condition for its solvability. This will be
just enough to determine N . We have

∇2
⊥Φ1 + α2

nΦ1 =
i

D0Φ0

[[(
ΩU0

C2
0

+ µ

)
D0Φ

2
0

]
X

+ ∇⊥·
(

ΩD0

C2
0

Φ2
0 V⊥0

)]
, (37a)

with at r = R

iω(n⊥·∇⊥Φ1) − Ω2D0

Z
Φ1

= ωµ
RRX√
R2 + R2

θ

Φ0 − i

[
U0

(
D0ΩΦ0

Z

)
X

+ U0

D0Ω

Z
Φ0,X

+ D0ΩV⊥0·∇⊥

(
Φ0

Z

)
+

D0Ω

Z
V⊥0·∇⊥Φ0

]
+ in⊥· (n⊥·∇⊥V⊥0)

D0ΩΦ0

Z
. (37b)

Multiply equation (37a) by D0Φ0 and equation (32) by D0Φ1. Integrate their
difference over a cross-section A to obtain

D0

∫ ∫
A

Φ0∇2
⊥Φ1 − Φ1∇2

⊥Φ0 dσ

= i

∫ ∫
A

[(
ΩU0

C2
0

+ µ

)
D0Φ

2
0

]
X

dσ + i

∫ ∫
A

∇⊥·
(

ΩD0

C2
0

Φ2
0 V⊥0

)
dσ. (38)

The first integral on the right-hand side may be recast into∫ ∫
A

[(
ΩU0

C2
0

+ µ

)
D0Φ

2
0

]
X

dσ =

∫ 2π

0

∫ R

0

∂

∂X

[(
ΩU0

C2
0

+ µ

)
D0Φ

2
0

]
r dr dθ

=
d

dX

[(
ΩU0

C2
0

+ µ

)
D0

∫ ∫
A

Φ2
0 dσ

]
−

(
ΩU0

C2
0

+ µ

)
D0

∫ 2π

0

Φ2
0

∣∣
r=R

RRX dθ.

(39)

† In the slightly more general context of the method of multiple scales, this condition is equivalent
to suppression of secular terms in order to render the approximation to remain valid for scales
X = O(1).
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The second one becomes, with equation (25),∫ ∫
A

∇⊥·
(

ΩD0

C2
0

Φ2
0 V⊥0

)
dσ =

ΩD0

C2
0

∫
∂A

Φ2
0 (V⊥0·n⊥) d�

=
ΩD0

C2
0

∫ 2π

0

Φ2
0

∣∣
r=R

(V⊥0·n⊥)

√
R2 + R2

θ dθ =
ΩD0

C2
0

U0

∫ 2π

0

Φ2
0

∣∣
r=R

RRX dθ. (40)

Together these yield

D0

∫ ∫
A

Φ0∇2
⊥Φ1 − Φ1∇2

⊥Φ0 dσ

= i
d

dX

[(
ΩU0

C2
0

+ µ

)
D0

∫ ∫
A
Φ2

0 dσ

]
− iµD0

∫ 2π

0

Φ2
0

∣∣
r=R

RRX dθ. (41)

On the other hand, by using the boundary conditions for Φ0 and Φ1 (equations (32)
and (37b)), this is also equal to

D0

∫
∂A

Φ0 (n⊥·∇⊥Φ1) − Φ1(n⊥·∇⊥Φ0) d�

= −D0

ω

∫
∂A

[
U0Φ0

(
D0Ω

Z
Φ0

)
X

+
U0D0Ω

Z
Φ0Φ0,X + D0ΩΦ0V⊥0·∇⊥

(
Φ0

Z

)

+
D0Ω

Z
Φ0(V⊥0·∇⊥Φ0) − n⊥· (n⊥·∇⊥V⊥0)

Φ2
0D0Ω

Z

]
d� − iµD0

∫ 2π

0

Φ2
0

∣∣
r=R

RRX dθ.

(42)

Using equation (25) and the fact that V ·n = 0, we can combine equations (41) and
(42) to obtain

−iω
d

dX

[(
ΩU0

C2
0

+ µ

)
D0N

2

]
=

∫
∂A

ε−1M
(

ΩD2
0Φ

2
0

Z
V

)
d� + O(ε2) (43)

where we defined the operator

M( f ) = ∇· f − n · (n·∇ f ). (44)

Whenever f ·n = 0 (as is the case here), M( f ) happens to be just the surface
divergence of f (see Appendix A). Before we continue we need an auxiliary result.

Lemma 1. For any sufficiently smooth vector field f , with f ·n = 0 at the tube surface
r = T (x, θ), we have∫

∂A
[∇· f − n· (n·∇ f )]

√
1 +

T 2T 2
x

T 2 + T 2
θ

d� =
d

dx

∫
∂A

( f ·ν) d�,

where ν = n × e� is the unit vector normal to ∂A, tangential to the surface and pointing
in the positive x-direction.

Proof. See Appendix A.

Identify T (x, θ) = R(εx, θ ), such that 1 + (R2R2
x)/(R

2 + R2
θ ) = 1 + O(ε2). It is easily

verified that

V ·ν = (U ex + V⊥)· (n× e�) = (n·n⊥)U − (n· ex)(V⊥·n⊥) = U0 + O(ε2).
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This yields the result∫
∂A

ε−1M
(

ΩD2
0Φ

2
0

Z
V

)
d� =

d

dX

∫
∂A

ΩD2
0

Z
U0Φ

2
0 d� + O(ε2)

:=
d

dX

[
ΩD2

0U0N
2

∫
∂A

1

Z
ψ2

n d�

]
.

Finally, we obtain now the adiabatic invariant

d

dX

[
iω

(
ΩU0

C2
0

+ µ

)
D0N

2 + D2
0ΩU0N

2

∫
∂A

1

Z
ψ2

n d�

]
= 0. (45)

It is convenient to introduce the reduced axial wavenumber

σ =

√
1 −

(
C2

0 − U 2
0

) α2

ω2
(46)

so that

µ = ω
C0σ − U0

C2
0 − U 2

0

,
U0Ω

C2
0

+ µ =
ωσ

C0

, Ω = ωC0

C0 − U0σ

C2
0 − U 2

0

. (47)

This yields finally for the amplitude N

Q2

N2
=

ωσD0

C0

+
D2

0Ω

iω
U0

∫
∂A

1

Z
ψ2

n d� (48)

where Q2 is an integration constant. It represents the conserved quantity, and is to be
fixed at some position X = X0. Of course, all along the duct, N should remain on the
same branch of its (in general) complex square root. In the case of an annular duct
the analysis is only a little different, and we obtain (with outer perimeter denoted by
∂A2 and inner perimeter by ∂A1)

Q2

N2
=

ωσD0

C0

+
D2

0ΩU0

iω

(∫
∂A2

1

Z2

ψ2
n d� −

∫
∂A1

1

Z1

ψ2
n d�

)
. (49)

This is the main result of this paper.

5. Special cases and previous solutions
5.1. Hard walls

If Z→∞, we obtain

ωσD0

C0

N2 = Q2 = constant. (50)

5.2. No mean flow

If U = 0, D and C are constant and we obtain

µN 2 = constant. (51)

5.3. Axisymmetric duct with constant impedance

If R = R(X), the eigenfunctions are given by

ψ = K(X)Jm(α(X)r)

{
cos(mθ)

sin(mθ)

}
for m ∈ �.
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Note that because of symmetry the eigenvalues have multiplicity 2, i.e. for every
eigenvalue we have 2 eigenfunctions. K is determined by the relation

K2

∫ 2π

0

{
cos2(mθ)

sin2(mθ)

}
dθ

∫ R

0

Jm(αr)2r dr = 1
2
πK2R2

(
1 − m2 − ζ 2

α2R2

)
Jm(αR)2 = 1,

(52)

where ζ = Ω2D0R/iωZ and π should be read as 2π if m = 0. There are similar
expressions for an annular duct. The line integral along ∂A becomes (for any m)∫

∂A

1

Z
ψ2 d� =

2

ZR

(
1 − m2 − ζ 2

α2R2

)−1

. (53)

The resulting expressions are equivalent to what was found in Rienstra (1999), except
that there the pair eimθ and e−imθ was taken, instead of cos(mθ ) and sin(mθ). In the
present formulation this choice would lead to a vanishing integral over ψ2, and it
would not have been possible to normalize ψ in the way assumed here. Of course,
both forms are entirely equivalent because the complex exponential is easily recovered
from a suitable combination of two eigenfunctions of the same eigenvalue.

5.4. Elliptic hard-walled duct

The analysis of Rienstra (1999), restricted to hard walled ducts, was extended by
Peake & Cooper (2001) to ducts of elliptic cross-section. The present solution includes
their results, as may be seen by comparing their equation (38) (or (36))

M2
n(X) =

Q2
0C

2
0 (X)(

C2
0µ + ΩU0

)
D0I

with our equation (48) with Z = ∞, and noting that we normalized the eigenfunctions
such that their integral I becomes equal to unity.

6. Turning point analysis
In the case of hard walls, the above analysis fails when σ → 0. So when the medium

and diameter vary in such a way that at some point X = Xt wavenumber σ vanishes,
the present solution breaks down. In a small interval around Xt the mode does not
vary slowly and locally a different approximation is necessary. In the terminology of
matched asymptotic expansions (Holmes 1995), this is a boundary layer in variable
X. The analysis follows closely the circular duct case presented in Rienstra (2000),
and we use a similar notation.

When σ 2 changes sign, and σ changes from real to imaginary, the mode changes
from cut-on to cut-off. If Xt is isolated, such that there are no interfering neighbouring
points of vanishing σ , no power is transmitted beyond Xt , and the wave has to reflect
at Xt . The incident propagating mode is split up into a cut-on reflected mode and
a cut-of transmitted mode (see figure 3). Therefore, a point where wavenumber σ

vanishes is called a ‘turning point’.
Assume at X = Xt a transition from cut-on to cut-off, so

σt = 0,
d

dX
σ 2

t < 0, µt = 1, µ′
t > 0,

C0tC
′
0t − U0tU

′
0t

C2
0t − U 2

0t

+
α′

t

αt

> 0, (54)

where subscript t indicates evaluation at X = Xt and the prime denotes a derivative
with respect to X.
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Xt

Figure 3. Turning point Xt , where a mode changes from cut-on to cut-off.

Consider incident, reflected and transmitted waves of the type found above. So in
X < Xt , where σ is real positive, we have the incident and reflected waves

φ =
n(X)√
σ (X)

ψ(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U 2

0

dX′
)[

exp

(
− i

ε

∫ X

Xt

ωC0σ

C2
0 − U 2

0

dX′
)

+ R exp

(
i

ε

∫ X

Xt

ωC0σ

C2
0 − U 2

0

dX′
)]

(55)

with reflection coefficient R to be determined and

n(X) = Q

(
C0

ωD0

)1/2

. (56)

In X > Xt , where σ is imaginary negative, we have the transmitted wave

φ = T n(X)√
σ (X)

ψ(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U 2

0

dX′
)

exp

(
−1

ε

∫ X

Xt

ωC0|σ |
C2

0 − U 2
0

dX′
)

(57)

with transmission coefficient T to be determined, and
√

σ = e−πi/4
√

|σ | will be taken.
This set of approximate solutions of equation (7), valid outside the turning

point region, constitute the outer solution. Inside the turning point region this
approximation breaks down. The approximation is invalid here, because neglected
terms of equation (7) are now dominant, and another approximate equation is to
be used. This will give us the inner or boundary layer solution. To determine the
unknown constants (here R and T), the inner and outer solutions are asymptotically
matched.

For the matching it is necessary to determine the asymptotic behaviour of the outer
solution in the limit X → Xt , and the boundary layer thickness (i.e. the appropriate
local coordinate).

From the limiting behaviour of the outer solution in the turning point region (see
below), we can estimate the order of magnitude of the solution. From a balance of
terms in the differential equation (7) it transpires that the turning-point boundary
layer is of thickness X − Xt = O(ε2/3), leading to a boundary layer variable ξ given
by

X = Xt + ε2/3λ−1ξ (58)

where λ is introduced for notational convenience later, and is given by

λ3 =
2ω2C2

0t(
C2

0t − U 2
0t

)2

(
C0tC

′
0t − U0tU

′
0t

C2
0t − U 2

0t

+
α′

t

αt

)
. (59)
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Figure 4. Airy functions.

By assumption λ = O(1). Since for ε → 0

σ 2(X) = σ 2
(
Xt + ε2/3λ−1ξ

)
= −2ε2/3

(
C0tC

′
0t − U0tU

′
0t

C2
0t − U 2

0t

+
α′

t

αt

)
λ−1ξ + O

(
ε4/3ξ 2

)
,

(60)
we have

1

ε

∫ X

Xt

ωC0σ

C2
0 − U 2

0

dX′ =

{
− 2

3
(−ξ )3/2 = −ζ if ξ < 0

−i 2
3
ξ 3/2 = −iζ if ξ > 0

(61)

where we have introduced ζ = 2
3
|ξ |3/2. The limiting behaviour for X ↑ Xt is now given

by

φ � nt

ε1/6(−ξ )1/4

(
ωC0t

λ
(
C2

0t − U 2
0t

)
)1/2

ψ(r, θ; Xt )(e
iζ + R e−iζ ), (62)

while for X ↓ Xt it is given by

φ � T nt

ε1/6ξ 1/4

(
ωC0t

λ
(
C2

0t − U 2
0t

)
)1/2

eπi/4 ψ(r, θ; Xt )e
−ζ . (63)

Since the boundary layer is relatively thin, also compared to the radial coordinate,
the behaviour of the incident mode remains quite unaffected in the radial direction,
and we can assume in the turning point region

φ(x, r, θ) = χ(ξ )ψ(r, θ; X) exp

(
i

ε

∫ X

Xt

ωU0

C2
0 − U 2

0

dX′
)

, (64)

where X = Xt + ε2/3λ−1ξ and ξ = O(1). Substitution in equation (7), and using the
defining equation (33) of ψ , we arrive at

ε2/3

(
1 − U 2

0t

C2
0t

)
λ2ψ(r, θ; Xt )(χ

′′ − ξχ) = O(ε). (65)

So to leading order we have Airy’s equation

d2χ

dξ 2
− ξχ = 0. (66)

This has the general solution (figure 4)

χ(ξ ) = � Ai(ξ ) + � Bi(ξ ), (67)
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where � and �, parallel to R and T, are to be determined from matching. Using the
asymptotic expressions (B 2b, d) in Appendix B for Airy functions, we find that for ξ

large with 1 � ξ � ε−2/3, equation (63) matches the inner solution if

�

2
√

πξ 1/4
e−ζ +

�√
πξ 1/4

eζ ∼ T nt

ε1/6ξ 1/4
eπi/4

(
ωC0t

λ
(
C2

0t − U 2
0t

)
)1/2

e−ζ . (68)

Since eζ → ∞, we can only have � = 0, and thus

� =
2nt

√
π

ε1/6

(
ωC0t

λ
(
C2

0t − U 2
0t

)
)1/2

eπi/4T. (69)

If −ξ is large with 1 � −ξ � ε−2/3 we use the asymptotic expression (B 2a), and
find that equation (62) matches the inner solution if

�
cos

(
ζ − 1

4
π
)

√
π (−ξ )1/4

∼ nt

ε1/6(−ξ )1/4

(
ωC0t

λ
(
C2

0t − U 2
0t

)
)1/2

(eiζ + Re−iζ ), (70)

which is equivalent to the following identity in variable ζ :

T eiζ + Tie−iζ ≡ eiζ + Re−iζ . (71)

This is true for any ζ if

T = 1, R = i. (72)

The amplitudes of these reflection and transmission coefficients could of course be
guessed by conservation-of-energy arguments. This is not the case with the phase. It
appears that the wave reflects with a phase change of 1

2
π, while the transmission is

without phase change.

7. Conclusions
The problem of sound propagation in slowly varying lined ducts of arbitrary

cross-section with isentropic irrotational mean flow is solved in principle. No attempt
has been made yet to illustrate the results with numerical examples, because the
corresponding eigenvalue problem in a cross-section is not straightforward. Further
work is underway to implement the present results numerically.

The present generalization gives much insight into previous results for circular and
elliptic ducts (which are special cases of the present results), because the form of the
solution is seen to become very simple through the normalization of the eigenfunctions
used.

An interesting phenomenon of mode propagating in hard-walled ducts of varying
cross-section is their change from propagating (cut-on) to exponentially decaying
(cut-off) at a so-called turning point. The present multiple-scales solution allows the
analysis of this turning point behaviour. The results are quite similar to those for the
circular duct case. It seems possible to extend our analysis to the quasi-turning point
behaviour in ducts with lined walls reported by Ovenden (2002).
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and greatly appreciated, contributions of Professor Jan de Graaf (TUE). We thank
Dr Nick Ovenden (TUE) for helpful discussions and critical reading of the text.
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Appendix A. Proof of Lemma 1
For any sufficiently smooth vector field f , with f ·n = 0 at the tube surface

r = T (x, θ), we have∫
∂A

[∇· f − n· (n·∇ f )]

√
1 +

T 2T 2
x

T 2 + T 2
θ

d� =
d

dx

∫
∂A

( f ·ν) d�,

where ν = n × e� is the unit vector normal to ∂A, tangential to the surface and
pointing in the positive x-direction.

Proof. We will use the powerful apparatus of tensor calculus for curvilinear
coordinates. See for example Sokolnikoff (1951).

Assume that any point x and unit normal vector n on the surface r = T (x, θ) are
parameterized by x = x(u1, u2) and n = n(u1, u2), where u1 = x and u2 = θ . Introduce
in the neighbourhood of the surface the curvilinear coordinate system (u1, u2, u3) by
the mapping

(u1, u2, u3) �→ x(u1, u2) + u3n(u1, u2).

This generates base vectors a1 = xu1 + u3nu1 , a2 = xu2 + u3nu2 , a3 = n and the
corresponding metric tensor (gij ) = (ai ·aj ) and its inverse (gij ). Since |n| = 1 and xu1

is tangent to the surface, both xu1 ·n = 0 and nu1 ·n = 0. (The same is true for u2.)
As a result, the third column and row of (gij ) and of (gij ) are of the form [0, 0, 1].
We introduce the Christoffel symbols{

m

i j

}
=

3∑
k=1

1
2
gmk

[
∂gjk

∂ui
+

∂gki

∂uj
− ∂gij

∂uk

]
.

From the structure of (gij ) and (gij ) it follows immediately that for any j{
3

3 j

}
= 0.

Consider the vector field f = f 1a1 + f 2a2 + f 3a3. Taking twice the inner product
with n of the covariant derivatives

(∇ f )ij =
∂f i

∂uj
+

3∑
k=1

{
i

j k

}
f k

now yields

n· (n·∇ f ) = (∇ f )33 =
∂f 3

∂u3
+

3∑
k=1

{
3

3 k

}
f k =

∂f 3

∂u3
.

At the surface, where f ·n = f 3 = 0, the divergence can be written as follows:

∇· f =

3∑
i=1

(
∂f i

∂ui
+

3∑
k=1

{
i

i k

}
f k

)
=

2∑
i=1

(
∂f i

∂ui
+

2∑
k=1

{
i

i k

}
f k

)
+

∂f 3

∂u3
= ∇T · f T +

∂f 3

∂u3
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where f T = f 1a1 +f 2a2 and ∇T · f T denotes the surface divergence of f . As a result
we have the remarkable identity

∇· f − n· (n·∇ f ) = ∇T · f T .

This divergence suggests applying Gauss’ theorem along the surface considered.
Consider a strip S wrapped around the surface between two cross-sections at x and
x + �x, with circumferences denoted by ∂A0 and ∂A1. Note that −ν and ν are the
respective outward normal unit vectors of the boundary of S.

With Gauss’ divergence theorem we have then∫ ∫
S

(∇T · f T ) dσ =

∫
∂A1

( f ·ν) d� −
∫

∂A0

( f ·ν) d�.

It may be noted that this result could also be obtained by identifying ∇· f −
n· (n·∇ f ) = n· (∇ × (n × f )) (following Möhring 2001 and Eversman 2001), and
then applying Stokes theorem.

We rewrite the first integral in the coordinates u1 = x ′ and u2 = θ by

dσ =

∣∣∣∣∂x
∂θ

× ∂x
∂x

∣∣∣∣ dθ dx ′ =

√
T 2 + T 2

θ + T 2T 2
x dθ dx ′.

If we let �x tend to zero and change dθ = |xθ |−1d� = (T 2 + T 2
θ )− 1

2 d�, we obtain∫ ∫
S

(∇T · f T ) dσ =

∫ x+�x

x

∫ 2π

0

(∇T · f T )

√
T 2 + T 2

θ + T 2T 2
x dθ dx ′

≈ �x

∫ 2π

0

(∇T · f T )

√
T 2 + T 2

θ + T 2T 2
x dθ = �x

∫
∂A

(∇T · f T )

√
1 +

T 2T 2
x

T 2 + T 2
θ

d�.

Divide by �x, and the result follows by taking the limit for �x → 0 and using
continuity of the integrand in x.

Appendix B. Airy functions
Related to Bessel functions of order 1

3
are the Airy functions Ai and Bi, solution of

y ′′ − xy = 0, (B 1)

(Abramowitz & Stegun 1964) with the following asymptotic behaviour (introduce
ζ = 2

3
|x|3/2):

Ai(x) �
cos

(
ζ − 1

4
π
)

√
π|x|1/4

(x → −∞) (B 2a)

� e−ζ

2
√

πx1/4
(x → ∞), (B 2b)

Bi(x) �
cos

(
ζ + 1

4
π
)

√
π|x|1/4

(x → −∞) (B 2c)

� eζ

√
πx1/4

(x → ∞). (B 2d)



Sound propagation in slowly varying lined duct flows 173

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. National Bureau of
Standards; Dover.

Cooper, A. J. & Peake, N. 2001 Propagation of unsteady disturbances in a slowly varying duct
with mean swirling flow. J. Fluid Mech. 445, 207–234.

Eversman, W. 2001 The boundary condition at an impedance wall in a non-uniform duct with
potential mean flow. J. Sound Vib. 246, 63–69.

Holmes, M. H. 1995 Introduction to Perturbation Methods. Springer.
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